聯(lián)系電話:
010-5637 0168-696
人工合成流體包裹體的拉曼光譜分析
流體包裹體是封存在礦物晶格缺陷及穴窩中的原始地質(zhì)流體,常用于揭示不同時(shí)期成巖成礦物化條件、流體成分和物質(zhì)來(lái)源。人工包裹體作為天然包裹體的類比物,是解決與流體包裹體有關(guān)的許多問(wèn)題有效途徑,作為校驗(yàn)應(yīng)用與自然界包裹體分析研究的各種儀器和測(cè)試方法的標(biāo)準(zhǔn),人工合成流體包裹體也越來(lái)越獲得廣泛的認(rèn)可。目前較為成熟的制作人工包裹體技術(shù)是在水溶液環(huán)境下愈合礦物裂縫形成包裹體,(±NaCl)體系就是zui常見的流體包裹體系之一[1-4]。
拉曼散射效應(yīng)是一種由分子和晶格振動(dòng)導(dǎo)致的非彈性散射,具有信息豐富、分析效率高和樣品用量少、非侵入性等顯著優(yōu)點(diǎn)。激光顯微拉曼光譜儀是集光譜學(xué)、化學(xué)計(jì)量學(xué)、探測(cè)技術(shù)以及計(jì)算機(jī)技術(shù)為一體的高新技術(shù)。激光顯微共聚焦拉曼光譜技術(shù),在流體包裹體領(lǐng)域具有以下優(yōu)勢(shì):1)無(wú)損傷檢測(cè),無(wú)接觸,zui大程度保證樣品性能;2)靈敏度高,譜峰信息豐富;3)拉曼光譜技術(shù)可以原位檢測(cè)包裹體高溫性能,探究?jī)?nèi)部物質(zhì)的相平衡、礦物的溶解、沉淀和遷移以及深部巖石的部分熔融作用等。
本文采用拉曼光譜分析方法檢驗(yàn)人工合成流體包裹體,并與自然包裹體進(jìn)行比對(duì),驗(yàn)證拉曼在該領(lǐng)域的可行性。
流體包裹體中包含微量的原始成礦流體,自其形成后沒有外來(lái)物質(zhì)的加入和自身物質(zhì)的流出,是一個(gè)相對(duì)封閉的體系,因此,流體包裹體可作為原始的成礦流體來(lái)研究,具有可靠的原生性。流體包裹體的形成壓力對(duì)于研究油氣運(yùn)移、聚集史及構(gòu)造運(yùn)動(dòng)史等具有重要意義,而如何準(zhǔn)確獲得包裹體捕獲時(shí)的壓力值,一直是許多學(xué)者關(guān)注并且不斷探索的課題。目前,常用測(cè)定流體包裹體壓力的方法有等容線圖解法、鹽度-溫度法、氯化鈉-水溶液包裹體密度式和等容式法及PVT模擬法等[1-5]。
Rosasco等(1975年)zui早發(fā)表了有關(guān)天然流體包裹體的拉曼光譜分析結(jié)果,隨后,Beny等(1982年)和Tourary等(1985年)分別發(fā)表全面的流體系統(tǒng)和拉曼光譜分析方法的研究成果[6],這些報(bào)道不僅為首肯了拉曼在包裹體領(lǐng)域應(yīng)用的可能性,也為有效截面積進(jìn)行流體包裹體定量分析指明了道路。Pasteris等(1988年)系統(tǒng)的討論了拉曼儀器的局限性和*化分析條件,為拉曼的廣闊應(yīng)用提供了可能。
在國(guó)內(nèi),黃偉林等(1990年),徐培蒼等(1996年)利用拉曼光譜儀進(jìn)行流體包裹體分析,并對(duì)定量分析方法進(jìn)行了詳細(xì)討論。
拉曼散射效應(yīng)是一種由分子和晶格振動(dòng)導(dǎo)致的非彈性散射,已有近九十年的研究和應(yīng)用歷史。1923年,史梅耳(A.Smekal)便從理論上預(yù)言拉曼光譜的存在。1928年,印度物理學(xué)家拉曼發(fā)現(xiàn)散射光頻率改變現(xiàn)象,并用分子振動(dòng)能級(jí)與虛能級(jí)進(jìn)行解釋,因而稱為拉曼散射。同時(shí),Landberg 、 Manderstam以及Cabannes、 Rocard均觀察到了拉曼散射結(jié)果。拉曼光譜具有信息豐富、分析效率高和樣品用量少、非侵入性等顯著優(yōu)點(diǎn),已被廣泛應(yīng)用到不同的領(lǐng)域,例如,生物技術(shù)、礦物學(xué)、環(huán)境監(jiān)測(cè)、食品和飲料、法醫(yī)學(xué)、醫(yī)學(xué)等。
拉曼光譜是由于晶格振動(dòng)、電荷密度起伏、自旋密度起伏、電子躍遷以及它們的耦合等因素引起的。當(dāng)以一定頻率的光源激發(fā)樣品時(shí),會(huì)產(chǎn)生彈性和非彈性散射現(xiàn)象。大部分分子發(fā)生彈性碰撞,光子的頻率沒有改變,或者說(shuō)波長(zhǎng)與能量沒有任何改變,不進(jìn)行能量轉(zhuǎn)移;小部分分子發(fā)生非彈性碰撞,由于勵(lì)磁或失活的分子振動(dòng)使光子可能會(huì)失去或增加一些能量,頻率發(fā)生改變。當(dāng)入射光波在分子中傳播擴(kuò)散時(shí),以下三種類型的現(xiàn)象可能發(fā)生,如圖1所示:
圖1 拉曼及瑞利散射能級(jí)示意圖
拉曼散射可以是斯托克斯散射,也可以是反-斯托克斯散射。從拉曼散射形成機(jī)理可以確認(rèn),拉曼散射光能量等于入射光能量加上或減去分子振動(dòng)能級(jí)的能量差,即拉曼散射光的頻率取決于激發(fā)光的入射頻率。而拉曼頻率位移(拉曼頻移,Raman shift)和分子振動(dòng)能級(jí)無(wú)關(guān),只取決于分子振動(dòng)能級(jí)差。
實(shí)驗(yàn)樣品:1組融合二氧化硅毛細(xì)管技術(shù)制備的流體包裹體樣本,直徑8-12mm,1組天然流體包裹體。
可以進(jìn)行拉曼分析的zui小流體包裹體取決于多種因素,包括顯微鏡系統(tǒng)的性質(zhì)、激光光源,光譜儀的檢測(cè)器類型、流體的密度、包裹體在樣品中的深度、基質(zhì)的背景信號(hào)等。為減少樣品實(shí)驗(yàn)時(shí)間,樣品制備有如下要求:
1)*選擇獲得顯微測(cè)溫?cái)?shù)據(jù)的包裹體,因此樣品需磨成兩面拋光,厚度在50-200um,建議采用蜂蠟包裹。
2)高反射率礦物(如方解石)在深部會(huì)造成雙圖像,為查找樣品增加難度,測(cè)試時(shí)需要細(xì)心查找樣品
3)測(cè)樣時(shí),盡量檢測(cè)靠近表面的樣品,如N2流體,*深度為30-70um,這個(gè)深度可以獲得zui強(qiáng)拉曼信號(hào),并避免物鏡與樣品間空氣中氮?dú)飧蓴_。但共焦拉曼光譜儀一般不會(huì)出現(xiàn)這種背景干擾問(wèn)題,因此此次試驗(yàn)選擇該類型儀器進(jìn)行測(cè)量。
4)盡量分析靠近表面的包裹體是流體包裹體拉曼光譜分析的一條重要原則,因?yàn)?/span>靠近樣品表面的小包裹體很可能比深處大包裹體的拉曼信號(hào)更強(qiáng)。
此外,有三個(gè)方面因素可能會(huì)引起熒光,包括表面、基質(zhì)礦物及流體包裹體。因此,實(shí)驗(yàn)之前需充分考慮測(cè)試條件,避免熒光的干擾
實(shí)驗(yàn)設(shè)備:北京卓立漢光儀器有限公司自主研發(fā)設(shè)計(jì)的“Finder Vista”顯微共聚焦拉曼光譜儀系統(tǒng),配備高性能CCD背散射探測(cè)器;激光器波長(zhǎng)為532nm,強(qiáng)度10mw;1800g/mm光柵,分辨率<0.9cm-1;狹縫寬度為100um,積分時(shí)間為20s,掃描尺寸為100X物鏡。
天然包裹體和人工合成包裹體的拉曼光譜圖如圖2所示。
圖2 天然包裹體和人工合成包裹體的拉曼光譜圖
本次實(shí)驗(yàn)包裹體為CO2氣體包裹體,可以為研究礦床成礦作用、油氣運(yùn)聚和成藏、地質(zhì)流體演化及構(gòu)造動(dòng)力學(xué)等提供了重要信息。
拉曼光譜分析毛細(xì)管樣品具有簡(jiǎn)單、直接、快速、等優(yōu)勢(shì),拉曼光譜儀檢測(cè)毛細(xì)管樣品不會(huì)干擾到樣品內(nèi)流體的信號(hào),同時(shí),由于毛細(xì)管具有宏觀尺寸,因此,拉曼光譜儀激光束不僅能地聚焦到每個(gè)相態(tài),而且能夠采集到很好的拉曼信號(hào)。人工合成的包裹體能夠清晰完善的演繹相變過(guò)程及特點(diǎn),為鑒定天然包裹體的準(zhǔn)確觀測(cè)奠定了基礎(chǔ),二氧化碳人工合成包裹體可以作為標(biāo)樣,作為校驗(yàn)應(yīng)用與自然界包裹體分析研究的各種儀器和測(cè)試方法的標(biāo)準(zhǔn),并為天然流體包裹體的拉曼光譜檢測(cè)提供技術(shù)上的可行性和實(shí)用性。
[1] 李佳佳,李榮西,劉海青。激光拉曼光譜法測(cè)定流體包裹體壓力的研究進(jìn)展[J]。理化檢驗(yàn)-化學(xué)分冊(cè), 2016, 52(7):859-864 .
[3] 倪培, 丁俊英, I-MingChou 等。一種新型人工“流體包裹體”:融合二氧化硅毛細(xì)管技術(shù)[J]。地學(xué)前緣, 2011, 18(5): 132-139.
[4] 陳勇, ERNSTA A。J。Burke。流體包裹體激光拉曼光譜分析原理、方法、存在的問(wèn)題及未來(lái)研究方向[J]。地質(zhì)評(píng)論, 2009, 55(6): 851-861.
[5] 陳晉陽(yáng), 鄭海飛, 曾貽善等. 以包裹體為腔體進(jìn)行高溫下流體的拉曼光譜原位分析[J]. 光譜學(xué)與光譜分析, 2003, 23(4): 726-729.
[6] 陳勇. 流體包裹體激光拉曼光譜分析原理、方法、存在的問(wèn)題及未來(lái)研究方向[J]. 地質(zhì)論評(píng), 2009, 55(6): 851-860.
[7] 丁俊英, 倪培, 管申進(jìn). H2O-CO2體系融合二氧化硅毛細(xì)管樣品原位顯微激光拉曼光譜研究[J]. 地學(xué)前緣, 2011, 18(5): 140-146.
[8] 李佳佳, 李榮西, 懂會(huì)等. 顯微激光拉曼定量分析CO2氣體碳同位素組成方法研究[J]. 光譜學(xué)與光譜分析, 2016, 36(8): 2391-2398.
技術(shù)支持:化工儀器網(wǎng) 管理登陸 網(wǎng)站地圖